Multi-Dendrix Logo

Source code for permute_mutation_data

#!/usr/bin/python

# Import globally required modules
import sys, random
try: import networkx as nx
except ImportError:
	print 'Error!'
	print '\tCould not import NetworkX (http://networkx.github.com).'
	print '\tMake sure NetworkX is in your path.'
	sys.exit(1)
from multi_dendrix import *

# Parse args
def parse_args(input_list=None):
	# Parse arguments
	import argparse
	class Args: pass
	args = Args()
	description = 'Creates permuted matrices for a given set of Multi-Dendrix'\
	              ' mutation data parameters using the MeMO permutation '\
	              'method. Requires NetworkX.'
	parser = argparse.ArgumentParser(description=description)
	parser.add_argument('-m', '--mutation_matrix', required=True,
		                help='File name for mutation data.')
	parser.add_argument('-c', '--cutoff', type=int, default=0, 
		                help='Minimum gene mutation frequency.')
	parser.add_argument('-p', '--patient_whitelist', default=None,
		                help='File of patients to be included.')
	parser.add_argument('-bp', '--patient_blacklist', default=None,
		                help='File of patients to be excluded.')
	parser.add_argument('-g', '--gene_whitelist', default=None,
		                help='File of genes to be included.')
	parser.add_argument('-bg', '--gene_blacklist', default=None,
		                help='File of genes to be excluded.')
	parser.add_argument('-o', '--output_dir', required=True,
		                help='Name of output directory.')
	parser.add_argument('-s', '--start_index', default=1, type=int,
		                help='Start index for name of permuted matrices.')
	parser.add_argument('-n', '--num_matrices', type=int, default=100,
		                help='Number of overlaps allowed per pathway.')
	parser.add_argument('-q', '--Q', type=int, default=100,
		                help='Edge swapping parameter.')
	parser.add_argument('-v', '--verbose', default=False, action='store_true',
		                help='Flag verbose mode.')

	# If called from the command line, parse command line args.
	if input_list: parser.parse_args(input_list, namespace=args)
	else: parser.parse_args(namespace=args)
	
	return args

def log(s):
	sys.stdout.write(s)
	sys.stdout.flush()

[docs]def bipartite_double_edge_swap(G, genes, patients, nswap=1, max_tries=1e75): '''A slightly modified version of the double_edge_swap function in NetworkX to preserve the bipartite structure of the graph.''' if nswap>max_tries: raise nx.NetworkXError("Number of swaps > number of tries allowed.") if len(G) < 4: raise nx.NetworkXError("Graph has less than four nodes.") # Instead of choosing uniformly at random from a generated edge list, # this algorithm chooses nonuniformly from the set of nodes with # probability weighted by degree. n=0 swapcount=0 keys,degrees=zip(*G.degree().items()) # keys, degree cdf=nx.utils.cumulative_distribution(degrees) # cdf of degree while swapcount < nswap: # pick two random edges without creating edge list # choose source node indices from discrete distribution (ui,xi)=nx.utils.discrete_sequence(2,cdistribution=cdf) if ui==xi: continue # same source, skip u=keys[ui] # convert index to label x=keys[xi] if (u in genes and x in genes) or (u in patients and x in patients): continue # both genes, skip patient1 = u if u in patients else x gene1 = x if x in genes else u # choose target uniformly from neighbors patient2=random.choice( list(G[gene1]) ) gene2=random.choice( list(G[patient1]) ) # don't create parallel edges if (gene1 not in G[patient1]) and (gene2 not in G[patient2]): G.add_edge(gene1,patient1) G.add_edge(gene2,patient2) G.remove_edge(gene1,patient2) G.remove_edge(patient1, gene2) swapcount+=1 if n >= max_tries: e=('Maximum number of swap attempts (%s) exceeded '%n + 'before desired swaps achieved (%s).'%nswap) raise nx.NetworkXAlgorithmError(e) n+=1 return G
[docs]def construct_mutation_graph(G2T, T2G): nodes = G2T.keys() + T2G.keys() edges = [ (gene, patient) for gene in G2T.keys() for patient in G2T[gene] ] G = nx.Graph() G.add_nodes_from(nodes) G.add_edges_from(edges) return G
[docs]def graph_to_mutation_data(H, genes, patients): G2T, T2G = dict([(g, set()) for g in genes]), dict( ) for patient in patients: mutations = H[patient] T2G[patient] = set( mutations ) for g in mutations: G2T[g].add( patient ) genes, patients = G2T.keys(), T2G.keys() return len(genes), len(patients), genes, patients, G2T, T2G
[docs]def permute_mutation_data(G, genes, patients, Q=100): H = G.copy() bipartite_double_edge_swap(H, genes, patients, nswap=Q * len( G.edges() )) return graph_to_mutation_data(H, genes, patients)
[docs]def run(args): # Load mutation data using Multi-Dendrix and output as a temporary file if args.verbose: log('Loading mutation data...') gene2include, sample2include, samples2types = white_and_blacklisting(args) mutation_data = load_db_with_cutoff(args.mutation_matrix, sample2include, gene2include, args.cutoff) m, n, genespace, patientspace, G2T, T2G = mutation_data if args.verbose: log('done!\n\n') # Make sure output directory exists import os os.system('mkdir -p ' + args.output_dir) # Construct bipartite graph from mutation data if args.verbose: log('Creating bipartite graph...') G = construct_mutation_graph(G2T, T2G) if args.verbose: log('done!\n\n') print 'Graph has', len( G.edges() ), 'edges among', len( G.nodes() ), 'nodes.\n' # Create permuted matrices and save to file for i in range(args.num_matrices): if args.verbose: log('+') # Permute bipartite graph and output as a patient adjacency list mutation_data = permute_mutation_data(G, genespace, patientspace, args.Q) m, n, genespace, patientspace, G2T, T2G = mutation_data adj_list = [ p + "\t" + "\t".join( T2G[p] ) for p in patientspace ] filename = args.output_dir + "/" + str(i + args.start_index) + '.txt' open(filename, 'w').write('\n'.join(adj_list)) if args.verbose: print
if __name__ == "__main__": run(parse_args())