#!/usr/bin/python
# Import globally required modules
import sys
try: import networkx as nx
except ImportError:
print 'Error!'
print '\tCould not import NetworkX (http://networkx.github.com).'
print '\tMake sure NetworkX is in your path.'
sys.exit(1)
from .. import multi_dendrix as Multi
import random
# Parse args
def parse_args(input_list=None):
# Parse arguments
import argparse
class Args: pass
args = Args()
description = 'Creates permuted matrices for a given set of Multi-Dendrix'\
' mutation data parameters using the MeMO permutation '\
'method. Requires NetworkX.'
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-m', '--mutation_matrix', required=True,
help='File name for mutation data.')
parser.add_argument('-c', '--cutoff', type=int, default=0,
help='Minimum gene mutation frequency.')
parser.add_argument('-p', '--patient_whitelist', default=None,
help='File of patients to be included.')
parser.add_argument('-bp', '--patient_blacklist', default=None,
help='File of patients to be excluded.')
parser.add_argument('-g', '--gene_whitelist', default=None,
help='File of genes to be included.')
parser.add_argument('-bg', '--gene_blacklist', default=None,
help='File of genes to be excluded.')
parser.add_argument('-o', '--output_dir', required=True,
help='Name of output directory.')
parser.add_argument('-s', '--start_index', default=1, type=int,
help='Start index for name of permuted matrices.')
parser.add_argument('-n', '--num_matrices', type=int, default=100,
help='Number of overlaps allowed per pathway.')
parser.add_argument('-q', '--Q', type=int, default=100,
help='Edge swapping parameter.')
parser.add_argument('-v', '--verbose', default=False, action='store_true',
help='Flag verbose mode.')
# If called from the command line, parse command line args.
if input_list: parser.parse_args(input_list, namespace=args)
else: parser.parse_args(namespace=args)
return args
def log(s):
sys.stdout.write(s)
sys.stdout.flush()
[docs]def bipartite_double_edge_swap(G, genes, patients, nswap=1, max_tries=1e75):
"""A modified version of the double_edge_swap function in NetworkX to preserve the bipartite structure of the graph.
For more details on this function, please see the `original NetworkX function <http://goo.gl/wWxBD>`_ that I shamelessly used to make this one.
The only major change here is that I ensure that u,v and x,y are of the same type (i.e. genes or patients).
:type G: NetworkX Graph
:param G: Bipartite graph G(V, E) representation of mutation data. Vertices are genes and patients, and edges connect genes mutated in particular patients.
:type genes: list
:param genes: genes in the mutation data.
:type patients: list
:param patients: patients in the mutation data.
:type nswap: int
:param nswap: number of edge swaps to perform (default: 1).
:type max_tries: int
:param max_tries: maximum number of attempted edge swaps to perform (default: 1e75).
:returns: Bipartite graph G (modified in place).
**See also:** :func:`permute_mutation_data`.
"""
if nswap>max_tries:
raise nx.NetworkXError("Number of swaps > number of tries allowed.")
if len(G) < 4:
raise nx.NetworkXError("Graph has less than four nodes.")
# Instead of choosing uniformly at random from a generated edge list,
# this algorithm chooses nonuniformly from the set of nodes with
# probability weighted by degree.
n=0
swapcount=0
keys,degrees=zip(*G.degree().items()) # keys, degree
cdf=nx.utils.cumulative_distribution(degrees) # cdf of degree
while swapcount < nswap:
# pick two random edges without creating edge list
# choose source node indices from discrete distribution
(ui,xi)=nx.utils.discrete_sequence(2,cdistribution=cdf)
if ui==xi:
continue # same source, skip
u=keys[ui] # convert index to label
x=keys[xi]
if (u in genes and x in genes) or (u in patients and x in patients):
continue # both are genes, skip
patient1 = u if u in patients else x
gene1 = x if x in genes else u
# choose target uniformly from neighbors
patient2=random.choice( list(G[gene1]) )
gene2=random.choice( list(G[patient1]) )
# don't create parallel edges
if (gene1 not in G[patient1]) and (gene2 not in G[patient2]):
G.add_edge(gene1,patient1)
G.add_edge(gene2,patient2)
G.remove_edge(gene1,patient2)
G.remove_edge(patient1, gene2)
swapcount+=1
if n >= max_tries:
e=('Maximum number of swap attempts (%s) exceeded '%n +
'before desired swaps achieved (%s).'%nswap)
raise nx.NetworkXAlgorithmError(e)
n+=1
return G
[docs]def construct_mutation_graph(mutation2patients, patient2mutations):
"""Converts mutation data stored as dictionaries into a bipartite NetworkX graph.
:type mutation2patients: dictionary
:param mutation2patients: Mapping of genes to the patients in which they are mutated.
:type patient2mutations: dictionary
:param patient2mutations: Mapping of patients to the genes they have mutated.
For more information on the internal format of mutation data used by Multi-Dendrix, see :func:`multi_dendrix.load_mutation_data`.
:returns: Bipartite NetworkX graph G=(V, E) with genes and patients as nodes, and edges representing a mutation in a particular gene in a particular patient.
**Examples:**
A view of example input:
>>> import networkx as nx
>>> mutation2patients = {"G1" : ["TCGA-01", "TCGA-02", "TCGA-03"], "G2" : ["TCGA-02"]}
>>> patient2mutations = {"TCGA-01" : ["G1"], "TCGA-02" : ["G1", "G2"], "TCGA-03" : ["G1"]}
Simple example of converting mutation data into a bipartite graph:
>>> G = construct_mutation_graph(mutation2patients, patient2mutations)
>>> nx.draw_spectral(G)
.. image:: /_static/mutation_graph.png
**See also:** :func:`graph_to_mutation_data`, :func:`permute_mutation_data`.
"""
genes, patients = mutation2patients.keys(), patient2mutations.keys()
nodes = genes + patients
edges = [ (gene, patient) for gene in genes
for patient in mutation2patients[gene] ]
G = nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)
return G
[docs]def graph_to_mutation_data(H, genes, patients):
"""Converts a bipartite NetworkX graph representing mutations in genes in different patients into the mutation data format used by Multi-Dendrix.
For more information on the mutation data format used by Multi-Dendrix, see :func:`multi_dendrix.load_mutation_data`.
:type H: NetworkX graph
:param H: Bipartite graph H(V, E) representation of mutation data. Vertices are genes and patients, and edges connect genes mutated in particular patients.
:type genes: list
:param genes: genes in the mutation data.
:type patients: list
:param patients: patients in the mutation data.
:returns: Mutation data tuple in the same format as :func:`multi_dendrix.load_mutation_data`.
**Examples:**
A view of example input:
>>> import networkx as nx
>>> H = nx.Graph()
>>> H.add_edges_from([("G1", "TCGA-01"), ("G1", "TCGA-02"), ("G1", "TCGA-03"),
("G2", "TCGA-02")])
>>> nx.draw_spectral(H)
.. image:: /_static/mutation_graph.png
Converting the graph into Multi-Dendrix mutation data format:
>>> graph_to_mutation_data(H, ["G1", "G2"], ["TCGA-01", "TCGA-02", "TCGA-03"])
>>> (2, 3, ['G2', 'G1'], ['TCGA-03', 'TCGA-02', 'TCGA-01'],
{'G2': set(['TCGA-02']), 'G1': set(['TCGA-03', 'TCGA-02', 'TCGA-01'])},
{'TCGA-03': set(['G1']), 'TCGA-02': set(['G2', 'G1']), 'TCGA-01': set(['G1'])})
**See also:** :func:`permute_mutation_data`, :func:`construct_mutation_graph`.
"""
mutation2patients, patient2mutations = dict([(g, set()) for g in genes]), dict( )
for patient in patients:
mutations = H[patient]
patient2mutations[patient] = set( mutations )
for g in mutations: mutation2patients[g].add( patient )
genes, patients = mutation2patients.keys(), patient2mutations.keys()
m, n = len(genes), len(patients)
return m, n, genes, patients, mutation2patients, patient2mutations
[docs]def permute_mutation_data(G, genes, patients, Q=100):
"""Permutes the given mutation data stored in bipartite graph G=(V, E) by performing | E | * Q edge swaps.
:type G: NetworkX Graph
:param G: Bipartite graph G=(V, E) representation of mutation data. Vertices are genes and patients, and edges connect genes mutated in particular patients.
:type genes: list
:param genes: genes in the mutation data.
:type patients: list
:param patients: patients in the mutation data.
:type Q: int
:param Q: constant multiplier for number Q * | E | of edge swaps to perform (default and suggested value: 100). See `Milo et al. (2003) <http://goo.gl/d723i>`_ for details on choosing Q.
:returns: Permuted version of G reformatted into the mutation data format used by Multi-Dendrix (see :func:`graph_to_mutation_data` and :func:`multi_dendrix.load_mutation_data`).
**Examples:**
A view of example input:
>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([("G1", "TCGA-01"), ("G1", "TCGA-02"), ("G1", "TCGA-03"),
("G2", "TCGA-02"), ("G3", "TCGA-01"), ("G3", "TCGA-02"), ("G4", "TCGA-03")])
>>> nx.draw_spectral(G, dpi=72, node_size=125, font_size=8)
.. image:: /_static/permute_mutation_data_before.png
Permute the mutation data:
>>> M = permute_mutation_data(G, ["G1", "G2", "G3", "G4"], ["TCGA-01", "TCGA-02", "TCGA-03"])
>>> M
(4, 3, ['G4', 'G3', 'G2', 'G1'], ['TCGA-03', 'TCGA-02', 'TCGA-01'],
{'G4': set(['TCGA-02']), 'G3': set(['TCGA-02', 'TCGA-01']), 'G2': set(['TCGA-03']),
'G1': set(['TCGA-03', 'TCGA-02', 'TCGA-01'])},
{'TCGA-03': set(['G2', 'G1']), 'TCGA-02': set(['G4', 'G3', 'G1']),
'TCGA-01': set(['G3', 'G1'])})
>>> H = construct_mutation_graph(M[-1], M[-2])
>>> nx.draw_spectral(H, dpi=72, node_size=125, font_size=8)
.. image:: /_static/permute_mutation_data_after.png
**See also:** :func:`construct_mutation_graph`, :func:`graph_to_mutation_data`.
"""
H = G.copy()
bipartite_double_edge_swap(H, genes, patients, nswap=Q * len( G.edges() ))
return graph_to_mutation_data(H, genes, patients)
def run(args):
"""Permutes the given mutation data a given number of times."""
# Load mutation data using Multi-Dendrix and output as a temporary file
if args.verbose: log('Loading mutation data...')
include = Multi.white_and_blacklisting(args.patient_whitelist,
args.patient_blacklist, args.gene_whitelist, args.gene_blacklist)
gene2include, patient2include = include
mutation_data = Multi.load_mutation_data_w_cutoff(args.mutation_matrix,
patient2include, gene2include, args.cutoff)
m, n, genes, patients, mutation2patients, patient2mutations = mutation_data
if args.verbose: log('done!\n\n')
# Make sure output directory exists
import os
os.system('mkdir -p ' + args.output_dir)
# Construct bipartite graph from mutation data
if args.verbose: log('Creating bipartite graph...')
G = construct_mutation_graph(mutation2patients, patient2mutations)
if args.verbose:
log('done!\n\n')
print 'Graph has', len( G.edges() ), 'edges among', len( G.nodes() ), 'nodes.\n'
# Create permuted matrices and save to file
for i in range(args.num_matrices):
if args.verbose: log('+')
# Permute bipartite graph and output as a patient adjacency list
mutation_data = permute_mutation_data(G, genes, patients, args.Q)
_, _, _, _, mutation2patients, patient2mutations = mutation_data
adj_list = [ p + "\t" + "\t".join( patient2mutations[p] )
for p in patients ]
filename = args.output_dir + "/" + str(i + args.start_index) + '.txt'
open(filename, 'w').write('\n'.join(adj_list))
if args.verbose: print
if __name__ == "__main__": run(parse_args())