Multi-Dendrix Logo

Source code for multi_dendrix.permute.mutation_data

#!/usr/bin/python

# Import globally required modules
import sys
try: import networkx as nx
except ImportError:
	print 'Error!'
	print '\tCould not import NetworkX (http://networkx.github.com).'
	print '\tMake sure NetworkX is in your path.'
	sys.exit(1)
from .. import multi_dendrix as Multi
import random

# Parse args
def parse_args(input_list=None):
	# Parse arguments
	import argparse
	class Args: pass
	args = Args()
	description = 'Creates permuted matrices for a given set of Multi-Dendrix'\
	              ' mutation data parameters using the MeMO permutation '\
	              'method. Requires NetworkX.'
	parser = argparse.ArgumentParser(description=description)
	parser.add_argument('-m', '--mutation_matrix', required=True,
		                help='File name for mutation data.')
	parser.add_argument('-c', '--cutoff', type=int, default=0, 
		                help='Minimum gene mutation frequency.')
	parser.add_argument('-p', '--patient_whitelist', default=None,
		                help='File of patients to be included.')
	parser.add_argument('-bp', '--patient_blacklist', default=None,
		                help='File of patients to be excluded.')
	parser.add_argument('-g', '--gene_whitelist', default=None,
		                help='File of genes to be included.')
	parser.add_argument('-bg', '--gene_blacklist', default=None,
		                help='File of genes to be excluded.')
	parser.add_argument('-o', '--output_dir', required=True,
		                help='Name of output directory.')
	parser.add_argument('-s', '--start_index', default=1, type=int,
		                help='Start index for name of permuted matrices.')
	parser.add_argument('-n', '--num_matrices', type=int, default=100,
		                help='Number of overlaps allowed per pathway.')
	parser.add_argument('-q', '--Q', type=int, default=100,
		                help='Edge swapping parameter.')
	parser.add_argument('-v', '--verbose', default=False, action='store_true',
		                help='Flag verbose mode.')

	# If called from the command line, parse command line args.
	if input_list: parser.parse_args(input_list, namespace=args)
	else: parser.parse_args(namespace=args)
	
	return args

def log(s):
	sys.stdout.write(s)
	sys.stdout.flush()

[docs]def bipartite_double_edge_swap(G, genes, patients, nswap=1, max_tries=1e75): """A modified version of the double_edge_swap function in NetworkX to preserve the bipartite structure of the graph. For more details on this function, please see the `original NetworkX function <http://goo.gl/wWxBD>`_ that I shamelessly used to make this one. The only major change here is that I ensure that u,v and x,y are of the same type (i.e. genes or patients). :type G: NetworkX Graph :param G: Bipartite graph G(V, E) representation of mutation data. Vertices are genes and patients, and edges connect genes mutated in particular patients. :type genes: list :param genes: genes in the mutation data. :type patients: list :param patients: patients in the mutation data. :type nswap: int :param nswap: number of edge swaps to perform (default: 1). :type max_tries: int :param max_tries: maximum number of attempted edge swaps to perform (default: 1e75). :returns: Bipartite graph G (modified in place). **See also:** :func:`permute_mutation_data`. """ if nswap>max_tries: raise nx.NetworkXError("Number of swaps > number of tries allowed.") if len(G) < 4: raise nx.NetworkXError("Graph has less than four nodes.") # Instead of choosing uniformly at random from a generated edge list, # this algorithm chooses nonuniformly from the set of nodes with # probability weighted by degree. n=0 swapcount=0 keys,degrees=zip(*G.degree().items()) # keys, degree cdf=nx.utils.cumulative_distribution(degrees) # cdf of degree while swapcount < nswap: # pick two random edges without creating edge list # choose source node indices from discrete distribution (ui,xi)=nx.utils.discrete_sequence(2,cdistribution=cdf) if ui==xi: continue # same source, skip u=keys[ui] # convert index to label x=keys[xi] if (u in genes and x in genes) or (u in patients and x in patients): continue # both are genes, skip patient1 = u if u in patients else x gene1 = x if x in genes else u # choose target uniformly from neighbors patient2=random.choice( list(G[gene1]) ) gene2=random.choice( list(G[patient1]) ) # don't create parallel edges if (gene1 not in G[patient1]) and (gene2 not in G[patient2]): G.add_edge(gene1,patient1) G.add_edge(gene2,patient2) G.remove_edge(gene1,patient2) G.remove_edge(patient1, gene2) swapcount+=1 if n >= max_tries: e=('Maximum number of swap attempts (%s) exceeded '%n + 'before desired swaps achieved (%s).'%nswap) raise nx.NetworkXAlgorithmError(e) n+=1 return G
[docs]def construct_mutation_graph(mutation2patients, patient2mutations): """Converts mutation data stored as dictionaries into a bipartite NetworkX graph. :type mutation2patients: dictionary :param mutation2patients: Mapping of genes to the patients in which they are mutated. :type patient2mutations: dictionary :param patient2mutations: Mapping of patients to the genes they have mutated. For more information on the internal format of mutation data used by Multi-Dendrix, see :func:`multi_dendrix.load_mutation_data`. :returns: Bipartite NetworkX graph G=(V, E) with genes and patients as nodes, and edges representing a mutation in a particular gene in a particular patient. **Examples:** A view of example input: >>> import networkx as nx >>> mutation2patients = {"G1" : ["TCGA-01", "TCGA-02", "TCGA-03"], "G2" : ["TCGA-02"]} >>> patient2mutations = {"TCGA-01" : ["G1"], "TCGA-02" : ["G1", "G2"], "TCGA-03" : ["G1"]} Simple example of converting mutation data into a bipartite graph: >>> G = construct_mutation_graph(mutation2patients, patient2mutations) >>> nx.draw_spectral(G) .. image:: /_static/mutation_graph.png **See also:** :func:`graph_to_mutation_data`, :func:`permute_mutation_data`. """ genes, patients = mutation2patients.keys(), patient2mutations.keys() nodes = genes + patients edges = [ (gene, patient) for gene in genes for patient in mutation2patients[gene] ] G = nx.Graph() G.add_nodes_from(nodes) G.add_edges_from(edges) return G
[docs]def graph_to_mutation_data(H, genes, patients): """Converts a bipartite NetworkX graph representing mutations in genes in different patients into the mutation data format used by Multi-Dendrix. For more information on the mutation data format used by Multi-Dendrix, see :func:`multi_dendrix.load_mutation_data`. :type H: NetworkX graph :param H: Bipartite graph H(V, E) representation of mutation data. Vertices are genes and patients, and edges connect genes mutated in particular patients. :type genes: list :param genes: genes in the mutation data. :type patients: list :param patients: patients in the mutation data. :returns: Mutation data tuple in the same format as :func:`multi_dendrix.load_mutation_data`. **Examples:** A view of example input: >>> import networkx as nx >>> H = nx.Graph() >>> H.add_edges_from([("G1", "TCGA-01"), ("G1", "TCGA-02"), ("G1", "TCGA-03"), ("G2", "TCGA-02")]) >>> nx.draw_spectral(H) .. image:: /_static/mutation_graph.png Converting the graph into Multi-Dendrix mutation data format: >>> graph_to_mutation_data(H, ["G1", "G2"], ["TCGA-01", "TCGA-02", "TCGA-03"]) >>> (2, 3, ['G2', 'G1'], ['TCGA-03', 'TCGA-02', 'TCGA-01'], {'G2': set(['TCGA-02']), 'G1': set(['TCGA-03', 'TCGA-02', 'TCGA-01'])}, {'TCGA-03': set(['G1']), 'TCGA-02': set(['G2', 'G1']), 'TCGA-01': set(['G1'])}) **See also:** :func:`permute_mutation_data`, :func:`construct_mutation_graph`. """ mutation2patients, patient2mutations = dict([(g, set()) for g in genes]), dict( ) for patient in patients: mutations = H[patient] patient2mutations[patient] = set( mutations ) for g in mutations: mutation2patients[g].add( patient ) genes, patients = mutation2patients.keys(), patient2mutations.keys() m, n = len(genes), len(patients) return m, n, genes, patients, mutation2patients, patient2mutations
[docs]def permute_mutation_data(G, genes, patients, Q=100): """Permutes the given mutation data stored in bipartite graph G=(V, E) by performing | E | * Q edge swaps. :type G: NetworkX Graph :param G: Bipartite graph G=(V, E) representation of mutation data. Vertices are genes and patients, and edges connect genes mutated in particular patients. :type genes: list :param genes: genes in the mutation data. :type patients: list :param patients: patients in the mutation data. :type Q: int :param Q: constant multiplier for number Q * | E | of edge swaps to perform (default and suggested value: 100). See `Milo et al. (2003) <http://goo.gl/d723i>`_ for details on choosing Q. :returns: Permuted version of G reformatted into the mutation data format used by Multi-Dendrix (see :func:`graph_to_mutation_data` and :func:`multi_dendrix.load_mutation_data`). **Examples:** A view of example input: >>> import networkx as nx >>> G = nx.Graph() >>> G.add_edges_from([("G1", "TCGA-01"), ("G1", "TCGA-02"), ("G1", "TCGA-03"), ("G2", "TCGA-02"), ("G3", "TCGA-01"), ("G3", "TCGA-02"), ("G4", "TCGA-03")]) >>> nx.draw_spectral(G, dpi=72, node_size=125, font_size=8) .. image:: /_static/permute_mutation_data_before.png Permute the mutation data: >>> M = permute_mutation_data(G, ["G1", "G2", "G3", "G4"], ["TCGA-01", "TCGA-02", "TCGA-03"]) >>> M (4, 3, ['G4', 'G3', 'G2', 'G1'], ['TCGA-03', 'TCGA-02', 'TCGA-01'], {'G4': set(['TCGA-02']), 'G3': set(['TCGA-02', 'TCGA-01']), 'G2': set(['TCGA-03']), 'G1': set(['TCGA-03', 'TCGA-02', 'TCGA-01'])}, {'TCGA-03': set(['G2', 'G1']), 'TCGA-02': set(['G4', 'G3', 'G1']), 'TCGA-01': set(['G3', 'G1'])}) >>> H = construct_mutation_graph(M[-1], M[-2]) >>> nx.draw_spectral(H, dpi=72, node_size=125, font_size=8) .. image:: /_static/permute_mutation_data_after.png **See also:** :func:`construct_mutation_graph`, :func:`graph_to_mutation_data`. """ H = G.copy() bipartite_double_edge_swap(H, genes, patients, nswap=Q * len( G.edges() )) return graph_to_mutation_data(H, genes, patients)
def run(args): """Permutes the given mutation data a given number of times.""" # Load mutation data using Multi-Dendrix and output as a temporary file if args.verbose: log('Loading mutation data...') include = Multi.white_and_blacklisting(args.patient_whitelist, args.patient_blacklist, args.gene_whitelist, args.gene_blacklist) gene2include, patient2include = include mutation_data = Multi.load_mutation_data_w_cutoff(args.mutation_matrix, patient2include, gene2include, args.cutoff) m, n, genes, patients, mutation2patients, patient2mutations = mutation_data if args.verbose: log('done!\n\n') # Make sure output directory exists import os os.system('mkdir -p ' + args.output_dir) # Construct bipartite graph from mutation data if args.verbose: log('Creating bipartite graph...') G = construct_mutation_graph(mutation2patients, patient2mutations) if args.verbose: log('done!\n\n') print 'Graph has', len( G.edges() ), 'edges among', len( G.nodes() ), 'nodes.\n' # Create permuted matrices and save to file for i in range(args.num_matrices): if args.verbose: log('+') # Permute bipartite graph and output as a patient adjacency list mutation_data = permute_mutation_data(G, genes, patients, args.Q) _, _, _, _, mutation2patients, patient2mutations = mutation_data adj_list = [ p + "\t" + "\t".join( patient2mutations[p] ) for p in patients ] filename = args.output_dir + "/" + str(i + args.start_index) + '.txt' open(filename, 'w').write('\n'.join(adj_list)) if args.verbose: print if __name__ == "__main__": run(parse_args())